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SUMMARY

A method of solution is presented for compressible fluid flow past
an elliptic cylinder by means of the varistional method. The solution
is obtalned as a function of thickness ratio and free-stream Mach
number. Numericel examples are carried out for several thickness ratios
and Mach mumbers and the results are compared with those obtained by
other methods. Tt is seen that the variational method yields good
results for flow past a thick body at a low Mach number as well as for
flow past a thin body at & high Mach number.

INTRODUCTION

In recent years the progress made in theory and practice of high-
speed aerodynamics has made all the more important the fact that one
should try to solve the equations of motion more accurately. Owing to
the difficulty of the nonlinearity of the equations, this problem has
been attacked always by approximations.

For slender bodies there is the solution gilven in terms of the
thickness parameter, usually referred to as the Prandtl-Glauert method.
On the other hand the method of Reylelgh-Janzen gives the solution in
powers of Mach mumber and can be used in the case of thick bodies. This
method was applied by Hooker (reference 1) to the study of compressible
fluild flow past elliptic cylinders. But owing to the necessity of
expanding a certain function in the analysis, Hooker's method cannot
suitably be applied for small fineness ratios. Kaplan by using Poggi's
method has investigated this problem (reference 2). Although his result
is expressed in finite terms, some infinite series must be used in the
course of the method. Moreover, Kaplan's solution deals with the
velocity and pressure distributions on the surface of the cylinder only
and not in the interior of the domain. Imai and Aihara (reference 3)
also used the Rayleigh-Janzen method and obtalned the flow past an
elliptic cylinder in a more general manner. The use of the Rayleigh-
Janzen method would involve formidable computation beyond the second
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approximation. For this reason this method is not very suitable. for
flows at high Mach numbers. Perl (reference %) used the method of
expressing the equations of motion in terms of the streamline curveture
and then integrating them.

In this paper is presented a solution for compressible fluild flow
past an elliptic cylinder by the direct method following the calculus
of variations. The formulation of the variational principle in hydro-
dynamics was first due to Hargreaves (reference 5) who has shown that
the integral to be used in the variational principle is a linear function
of pressure. For steady irrotational flows, Bateman (reference 6) has
shown that the pressure energy is an extremum. He gives the integrand
as a function of the density and the velocity potential. In an earlier
paper (reference T) Bateman gives the integrand as a function of the
velocity and local velocity of sound. Bateman's original integral,
however, can not be directly used for fluild which occupies an infinite
domain. Braun (reference 8) used the same integral without modification
and attempted to obtain an approximate solution for unlform steady flow
pest a circular cylinder by the use of Rayleigh-Ritz method and his
method leads to erroneous results. Wang (reference 9) modified the
integral for such cases and it is fundamentally thls method that was
used by the author in this report for the study of flow past elliptic
cylinders.

An elliptic coordipate system is used and in the set of simultaneous
equations given in the appendix the coefficients of the terms contain
as parameters the thickness ratio of the ellipse and the free-stream
Mach number. Thus a method of solution for the flow past an elliptic
cylinder of any flneness ratio is indicated. The results are compared
with those obtained by Hooker, Kaplan, and Perl.

The present work, carried out at the Daniel Guggenheim School of
Aeronsutics, College of Engineering, New York University, is a major
pert of a thesis submitted to the Graduate Divislion for the partial
fulfillment of the degree of Doctor of Engineering Science and has been
made available to the NACA for publication because of its general
interest.

The author wishes gratefully to acknowledge the valuable sugges-
tions and guldance given to him by Dr. C. T. Wang in the preparation of
the thesis. The author also wishes to express his apprecilation to
Profegsor ¥. K. Teichmann for the facilities afforded to him.
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Subscripts:

1

LIST OF SYMBOIS

velocity of sound

pressure coefficient

va;iational integral

Mach number (g/a)

pressure

local velocity

maximm velocity

velocity of uniform parallel flow at infinity
velocity component in x-dlirection

velocity component in y-direction

rectangular coordinates

-cosh (& + in)

ratio of specific heats, 1.405 for air

eccentric angle

-elliptic coordinates

density
velocity potential

admissible variation of @

incompressible flow
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(o} conditions at infinity

X¥,E5M respective partial derivatives

EQUATIONS OF MOTION FOR COMPRESSIBLE FLUID FLOW

The various equations to be satisfied for steady, irrotational flow
of a compressible fluid are given below. The continuity equation in
two dimensions is

) s
+ =0 1
5P 5;(DV) (1)
For the flow to be irrotational one must satisfy another relation
ov _%u_ (2)
ox OJy

For isentropic changes of state, the equation of state is

p = Constant X p7

The Euler equations of motion in the integrated form will then be

a2 42 -1 2 r-1_2 (3)

_ 2 A
5 4 =8~ + 75— 4q4

where 7 18 the ratio of specific heats and a 1s the velocity of
sound. The subscript o refers to the conditions at infinity. Since
in the variational principle, as explained later, a value of 7y =2
will be used, the above equation of state is to be replaced by

p=A+ Bp”

where A and B are constants. The significance of such an equation
and the justification of using 7 = 2 are given in reference 9. This
equation of state in the differential form is
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dp _ -1 _ 2
35 =B’ = s (&)

One substitutes equation (1) into equation (3) and introduces

w=98
ox

Thus 2 = f,° + f2. By this introduction of @, the irrotationality

condition (equation (3)) is satisfied a priori. Equation (3) will now
take the form

7-1 Y - 1{;2 2\, 2,7-1_o
Byp +T(¢x+¢y)_ao+ == q,

Since the right-hand side of this relation is a constant, it can be

replaced by %1 qm2 where qm2 is dependent only upon the conditions
at infinity. Then

Byp?-1 = .7_;_1(%2 - 8.2 - ¢y2) (5)
or l

1 1
_fr - \7-I/( > )TJ:
b= (Ty) (qm - ¢x2 - ¢y2 7

Substituting this value of p into the equation of continuity (l), one
obtains the differential equation for the velocity potential

l ——

1
(G I o (R S S I A ELINC
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The boundary conditions on the velocity potential are as follows:
When the flow is subsonic, the disturbances caused by the body would
vanish at infinity. Thus the velocity at infinity would be that of the
uniform parallel flow. The boundary of the body would be a streamline
and so the normal derivative of ¢ is zero on the body. Expressed
mathematically, the boundary conditions are

B _y at infinity
dx

. %

éﬁ = 0 on the body
on

VARTATTONAL PRINCIPIE

The formulation of a variational.principle for the motion of a
nonviscous compressible fluid is given by Bateman (reference 7.
He indicates the associated integral in the calculus of variations is

of the type
I=ffG(q)dxdy

Further, he suggests that for adiabatic conditions the appropriate form
of G is

7-1

&) = [26,2 + (7 - a2 - o? (8)

where d is the velocity at infinity. Replacing a 2 + 7 -1 q02
r-1_2
by 5 O results in

2 A
G(q) = (r - 1)7-1 (qm2 - q2)7"1




NACA TN 2666 7

Since the constant coefficient is immaterial in a variational principle,
Bateman's integral can be written as

7
) ff tax ay (9)

A proof that the integral, equation (9), gives equation (6) as its
Euler equation can be found in reference 9.

For irrotational flow q° may be replaced by @,° + ¢y2; then

) ff (qm2 - A - ¢y2)'7z—l & (5e)

Now ¢ is varied so that the variation 8¢ is zero on the boundary
which is not a streamline; &I = O becomes

-2 f f - ¢y2)7%(¢xs¢x + §,08,) ax ay = 0 (10)

Equation (10) can be modified as follows:

A
7 - lf f - ¢Y2)7—l¢xs¢

<
%[(qme - 8.7 - ¢y2)7'1¢y8¢ ax dy +
_&__[[5¢i 2_¢2_¢27%1¢
7y -1 Ox (qm X Yy ) X

A
SB; (qm2 - ¢x2 - ¢y2)7_l¢g dx dy = O (11)
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With the aid of the divergence theorem, the first integral can be trans-
formed into a line integral taken on the boundary. This is

1
__2r jf (02 - 8,2 - 8,2)7 2op g.g as (12)

y -1

The line integral taken on the body contour will be zero silnce %Q =0

n
from boundary condition (7). The variation 8¢ must be so chosen as
to approach zero on the other boundary. For flow in an infinite domain
a correction must be made so as to insure the vanishing of the line
integral as was carried out in reference 9. Although 6¢ approaches
zero at infinity the line integral taken on the infinite boundary may
be of finite value. This should be subtracted from integral (9), so
that from equation (11) the following expression remains

of / / 2 (a2 - 4,2 - ¢y2)?}—l¢x +
1 _
—%[(qmg 82 - 42T | raxay =0 (13)

Since 8@ is any admissible variation, it follows that to satisfy this
relation equation (6) must be satisfied in the whole domain.

ELLTPTIC COORDINATES

For solving two-dimensional flow past elliptic cylinders, it is
convenient to use elliptic coordinstes and transform the integral,
equation (9), into the elliptic coordinate system.

Take & and 1 defined by the equation
z = x + iy = c cosh (¢ + in)

vhere ¢ dis a real constant.

-~
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The sbove relation after separation of real and imaginary parts
would give

x = ¢ cosh £ cos 7

¥y = c sinh § sin q

One takes all values from zero to infinity for £ and values from zero
to 2n for n. The curves & = Constant and 7 = Constant will be
the directions of the coqgrdinate axes and are confocal ellipses and
hyperbolas, respectively. These are shown iIn figure 1. The angle 1
is usually called the "eccentric angle."

If a and b are the semimajor and semiminor axes of the ellipse
given by ¢ = go, then

a = ¢ cosh £

o'
Il

¢ sinh go

It follows that a® - p2 = c , and

The ratio b/a is the thickness ratio of the ellipse and for simplicity

26, a +b

P is termed +t in the =author's discussion and

the function e

computation.

The modulus of transformation is given by

a(t + iq)

1
az = (14)

c(cosh2§ - cosen)l/e
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If § is the velocity potential in elliptic coordinates, the velocity
components normal and tangential to an ellipse are

i Be s Bn

c(cosh2§ - cosgn)l/2 i c(cosheg - cosen)l/2

, respectively. Hence

2 2
2 _ Pe” + By
q° = (15)
c2<cosh2§ - cosen>

Also the elemental area in the elliptic coordinate system is

dg dn

c2(c03h2§ - cosen) (16)

da =

APPLICATION OF RAYLETIGH-RITZ METHOD

After transforming the boundary-value problem into a variational
problem, the Rayleigh-Ritz method can be used to obtain close approxima-
tions to the solution. Using relations obtained in the previous section,
variational integral (9) in the elliptic coordinate system would be,
with a value of 2 for 7,

. ¢§2 + ¢ 2 2 '
I= 2 4 2(cosne - ag a (17)
L/Cj/ﬁ “m cz(cosheg - cosen) ¢ (COB C082ﬂ) k

and it is proved in reference 6 that for subsonic flow the integral I
is a maximum for all admissible variations of ¢.

The Rayleigh-Ritz method is a direct method and consists of
approximating by a finite sequence of functions. TFor ¢ in the
integral (equation (17)), substitute

n

g=> af (18)

k=1
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with ¢k satisfying the boundary conditions and with 8, as undeter-
mined parameters.

Since the required solution for { makes the integral a maximum,
one may transform the variational problem into an ordinary meximizing
problem. Thus one can obtain a system of simultaneous equations by
taking partial derivatives wilth respect to the various constants:

Jo)
—a-l:O’ aI—O’ -a—-I—--_—_.
83

da,
and so forth. Solving these simultaneous equations, the constants can
be obtained. Then

0
a&l

¢ = al¢l + a.2¢2 + a3¢3 o e . (183')

makes the integral (equation (17)) stationary and is a solution of the
problem.

In the case where more than one set of values for these constants
is obtained the solution which makes the integral a maximum is to be
taken as the required solution.

EXTENSION TO INFINITE DOMAIN

In applying the variational integral, equation (9), to the present
case when the domain extends to infinity, the value of the integral
becomes infinite. But this does not prevent one from obtaining a solu-~
tion by maximizing or minimizing such an integral. The difficulty
would arise only in the case when this integral has to be evaluated.

There is another feature in connection with line integral (12)
which should be scrutinized carefully since it is taken around an
infinite boundary. This should be zero to satisfy the conditions upon
which the variational problem is formulated. Even though 8¢ approaches
zero at infinity, the product &@ ds mey contain certain terms of zero
power in r. Then line integral (12) will have a finite value and will
have to be accounted for by subtracting it from the integral of
equation (9).

e e e e ——————— ot e p——— e T
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Consider line integral (12) around an ellipse given by a large
value of € and then let £ approach infinity. One obtains for

2 2
2 ¢§ +¢Tl !

B cz(cosheé - cosen)

q

with @ assumed as given in a later section, equation (23), at large
distances

q2x02+o( = )

cosh2§

5 ) means terms approaching zero to the order of l/cosh2§
coshE

and higher ags £—>w.

where 0(

In the line integral, é@ is in the direction of the inward normal.

on
Therefore
ég =h ég
on ot
and the elemental length
_ 1
ds = i dn

where h 1s the modulus of transformation. Hence
ég ds = _B_Q dn
on ot

end with @ as in equation (23), at large values of ¢,

-a-g-ds=EJ(a+b)sinh§cosn+O 1 ) dan (19)
on coshZE
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In equation (23), the assumption is that the flow at infinity is pre-
scribed and is equal to the incompressible flow. Hence, the variation
80 for large values of £ will be the same as the difference between
the assumed ¢ and the incompressible wvelocity potentlal. Thus

3
: cos 1 cos~q 1
8 = A1y cosh E A3 cosh E 0(cosh3§) (20)

Substituting these into-line integral (12)

1
22 o s -

7y -1

7T
2. ye cos 1
_uf (qm U)U(a.+b) sinh £ cos "(Allcosh§+

3
A, 598 an + o[—2L
13 cosh §) K cosh?
After integrating and letting E—>w, the above exﬁressidn begpmes

. u(qm2 - UE)U(a + b) (nAll + 13; :IA13) (21)

This is the term which should be subtracted from the integral of
equation (17).

FLOW PAST AN ELLIPTIC CYLINDER

The velocity potential for incompressible flow past an elliptic
cylinder defined by £ =, 1is

¢i =U(a + b) cosh (& - &) cos 7 (22)
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This can be readily

checked to satisfy Iaplace'!s equation in elliptic coordinates

32

2 2
é—g + g—g =0
n

To investigate the two-dimensional flow of a compressible fluid
past an elliptic cylinder given by £ = &, one may assume ¢ in the

following form:

cos 1

R N G I E e e i

cos3q

A33 + . .

cosh3(t - Eg)

cos™ 1

A3

cos 1|

1 +
cosh3(§ - to)

(23)

where ¢i is the potential for incompressible flow and .Aqq, A13, A3l’
and A33 are undetermined parameters.

In the @bove assumed potential (equation (23)) all the additional
terms approach zero at infinity to the order of 1/cosh E. This leaves
only the potential of the incompressible flow which is the boundary
condition at infinity. Also it can be seen that for the additional
terms the derivatives with respect to & vanish at & = 5. Thus the
normal velocity component on the body due to the additional terms is
zero. The assumed variation (equation (23)) therefore satisfies the
If the flow were not symmetrical, one
would have to add to expression (23) terms containing sin 7, Bin3n,

required boundary conditions.

and so forth.

The assumed @ function (equation (23)) is now substituted into

the variational integral, equation (9).

To cover the whole domain

exterior to the ellipse given by ¢ = §,, the limits for integration

are from O to 2xr for 7 and from £,

to o Tfor E. By differ-

entiating under the.integral sign, one obtains the following four

simultaneocus equations:

oI

31y~

oI
31

&

oI
=0 —_— =
BA13
-0 oI _

0A33

N

, (2k)
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Integrating these equations, four algebraic simultaneous equations in
the parameters Aq;, A13, A3l’ and .A33 are finally obtained and are
glven in appendix A. The equations given in appendix A are divided
into two parts. The linear terms 1n the parameters are on the left-
hand gide of the equations. All the nonlinear terms are grouped
together and called K;, Ko, K3, and K). These are given at the

right-hand side of the equations, together with the constant terms.
NUMERICAL, EXAMPLE

The flow past an elliptic cylinder of thickness ratio b/a = 0.5
when the Mach number of uniform flow at infinity is 0.5 is investigated
and the method used in solving the equations is illustrated here.

The value of the major axlis of the ellipse is taken as a unit of
dimension, with b/a = 0.5. Then

Divide throughout the equations of appendix A by the velocity of sound
at infinity, so as to make the coefficients nondimensionsl. Substituting

these values of 'U/ao, qmz, and t in the four similtaneous equations

of appendix A and evaluasting all the coefficients, one obtains the
following system of equations: i

1.993019544; 1" + 1.67206436A;3" + 1.62409948A5;" + 1.32770102443" =

0.09169413 +-._2§; !

1.67206426A11 " + 2.28737268A13" + 1.3832566A31" + 1.TLHT0T58A33" =

1

0.03621830 +‘2.25

Kot

1.62409948A11 " + 1.38325662413" + 1.9646220kA5; " + 1.59203403A43" =

0.0790547h + ——— 5 25 X3’ -
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1.32770102A17 " + 1.714T0T58A13" + 1.5920340343;" + 1.78968390A33" =

0.03812186 + —2
2.0

T,

X
5 U

where X;', Ko', K3', and K)' are the proper values of X;, KXo,
K3, and K) of appendix A with the values of t, Ufag, and qp°
substituted and Aj1', Aj3', and so forth in the above set of equations

are the assumed coefficients of appendix A, each divided by the velocity
of sound at infinity.

Now one may make use of Crout's method (reference 10) and solve
the above set of equations in terms of the right-hand-side members of
each equation. Since the above matrix is symmetrical, it is quite easy
to obtain the following expressions:

Ayp' = 4.67065623h - 3.95643T29A, - 4.79816972h3 + L.5396620My,
Ay3' = -3.95643629\ + 1;.997005}1;2»2 + 4.1907851923 - 5.84736055M),
Agy' = -k 798169820 + h.h9o7é533x2 + 6.86307052)r3 - 6.8L4818730n,
Az’ = 4.59396635M; - 5.8473606kN, - 6.84818723h3 + 8.8449L015M),
where

M = 0.09169413 + E% Ky '

Ap = 0.03621830 + 57= 25 Kp!

A3 = 0.0T90SKTA + 5= 25 K3'

M, = 0.03812186 + 2125‘ K),*
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For the computation of Ajj', first ome puts all the nonlinear
terms as zero and obtains the values of the coefficients. Next these
are substituted in the complete equations and the values of the coef-
ficients are again solved for. This procedure is repeated and the above
set of equations is solved by successive iterations, until the coef-
Ticients iterate themselves within a desired accuracy. The following
are the wvalues obtalned:

2
Aqq' = 0.08335840
A13 = -0.05016832
> (25)
A3l' = 0.00714746
' = 0.00157309
233 )

These values are substituted in the expression for the velocity potential,
equation (23). The velocity at a point defined by the eccemtric angle 1
on the elliptic cylinder is given by

1

c(géshggo - cose'q)l/2 ¢ﬂ

q:

The value of §O is obtained from

t = e2§° =3

With the value of ¢ substituted in the above equation and after
dividing through by the velocity U at infinity, q/U' becomes

1

1

A
a._ @_4-9) gin 1 + 1l oin n+
u c(coshggo - c052n>i72 & Yo
343" 5 A3’ 3433" 2
—_— in n + inn + in
T cos“n sin 7 . sin 7 W, cos“n sin 7 (26)
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With the obtained values (equations (25)) of the coefficients, b/a = 0.5,
and M, = 0.5, the above equation would be

q _ __1.15470108 (1.68101172 - 0.29157138 cos?n) sinn  (27)

v (g ] cosz;)m

These vealues of q/U are computed for various angles 1 and are
given in table 1. The resulits are also shown plotted in figure 2.

From the pressure-density relation for adiabatic flow one can
obtain (reference 11) the following relation between the local pressure
and pressure at infinity:

' _7_
-1
2opo b (hezstueh o (37 -a (28)
PV F M

Note that 7 = 2 was used in the process of obtaining a solution for ¢.
It is possible to use 7 = 1.5 or 7 ='l.33, but it is seen that the
change in 7y does not alter the computed values of the velocities
apprecigbly.

Even though 7 = 2 is used for getting the velocities it is
proposed to use 7 = 1.405 in computing pressures. Then

1.405
C_ = = 1+ 0.202 - -1 (29)
P %poUe 0.7025M_2 (U)

The pressure computed ag above is shown in figure 3, as a pressure
coefficient, against 1 and is compared with the pressure distributions
obtained by the Prandtl-Glauert method and the Kérmén-Tsien method
(reference 12).

By substituting + = 11/9 in equation (24), the flow past
elliptic cylinder of thickness ratio 0.1 is computed when M, =
and the results are shown in figures 4 and 5.
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Using Poggi's method Kaplan (reference 2) has calculated the flow
past elliptic cylinders of thickness ratios 0.5 and 0.1l. These results
are shown in tables 1 and 2 and are plotted in figures 2 and 4 for
comparison.

By letting t approach infinity the flow past a circular cylinder
is obtained and the result is shown in table 3 and figure 6. Imai
(reference 13) has calculated the subsonic flow past a circular cylinder
to the sixth power of the stream Mach number. These results are shown
in table 3 and figure 6. The results obtained by Wang (reference 9)
show a higher velocity throughout. This is due to the fact that Wang
used six terms in the series assumed for the velocity potential. 1In the
present investigation only four terms of the series are used and hence
lower values for the wvelocities are obtalned.

CONCLUDING DISCUSSION

The velocities obtained by the variational method show more devia-
tion from the incompressible flow than indicated by Kaplan, Hooker, and
other investigators. From the velocity distribution shown in figures 2
and 4, it is seen that the variational method yields a.good result for
flow past a thick body at a low Mach number, as well as for flow past a
thin body at a high Mach number. There is close agreement with Perl's
results at both thickness ratios.

The results obtained by the variational method for the flow past an
elliptic cylinder of 0.1 thickness ratio at a Mach number M, = 0.8 are
given in teble 2. The maximum velocity occurs at the ends of the minor
axls and is given as q/U = 1.2255., With the aid of the well-known
relation between velocity and the stream density for adiabatic flow, the
meximum stream density is computed for the above velocity. A maximum
stream density of 0.575 is obtained by such computation. Using the
Prandtl-Busemann method, the second approximetion carried out by
Schmieden and Kawalki (reference 1%) shows a maximum stresm density of
0.583. Further, Schmieden and Kawalki indicate that the value of stream
dengity should naturally coincide with 0.578 given by the sonic boundary.
The present method gives results higher than those of Kaplan (refer-
ence 2) and more in agreement with references 4 and 1k.

. For the flow past a circular cylinder, the pressure coefficilents
obtalned by the present method are between those of the Prandtl-Glauert
and Kdrmdn-Tsien methods.

For flow past elliptic cylinders the pressure coefficients obtained
at 1 = n/2 are higher than those from the Krmén-Tsien method also.
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From figures 3 and 5 it appears that the local Mach number has more
effect than that indicated by the Kdrman-Tsien method. In figure T the
flow past a cylinder of 0.1 thickness ratio 1s shown at various Mach
nunbers. At higher Mach numbers the verlational method glves results
which differ considerably from those obtained by other methods. This
deviation appears in Hooker's results to some extent, as shown in
figure 2. This may be due to the fact that the compressibllity effect
is far higher at poinmts where the local velocity is nearer the criticel
value. The methods of Prandtl-Glauert and Kfrmén-Tsien for obtaining
the compressibility effect are independent of the critical Mach number
of the flow. But in the variationsl method the critical Mach number
directly affects the coefficients in the velocity potential. In fact,
at some value higher than the critical Mach number the coefficients do
not converge on successive iterations.

The point of zero pressure on the surface of a cylinder moves rear-
ward when compressibility is taken into account. This is not the case
when the Prandtl-Glauert and Ké&rmAn-Tsien methods are used. The investi-
gations of Kaplan and Hooker, however, show this deviation which is
consigtent with the experimental results.

New York University
New York, N. Y., August 1, 1949
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APPENDIX A

EQUATIONS FOR FLOW PAST ELLIPTIC CYLINDER OF

t -1 _
THICKNESS RATIO T AT M, = U/a ;

The equations for the flow past an elliptic cylinder of thickness
ratio %—i—% at M, = U/a, are as follows, where A, B, C, D, and

80 forth are certain definite integrals containing the parameter <+
and are defined at the end of the appendix.

First equation:

Ay (1.333333¢,° - U%(6B + 6tK - 1.180708175' +
A3 E.quQ - U2(6B + 2.47817h66 - 0.590354kT %—):l +
Az E.06666667qm2 - U(T72EC + 2htT - 1.5&7375&0_;, +

Aqgq E.quz - U2(72tC + 1.31446908 - 0.543L404T0 %ﬂ -

3 2at (A g 1 t t o+l
U 13Jr1(2+21;+1.59111692+21oge,c+1>+(21_%>2K1

Second equation:
Ay Eme - UQ_(GB + 2.47817466 - 0.5903544T %B +
A13E°33333333qm2 - U2(53 + 2.85882167 - 0.02182589 %1_ - 0.28250893 {le“}] +

Agy E.quﬁ‘ - U2(72tC + 1.10262516 - 0.5745401h %ﬂ +
A 2 _ y2[72tc + 1.43683614 - 0.0634586Lk £ - 0.2733779k )| =
33|%m T~ 12

3 2at [ A 1 t + 1\2
U g5t * 1.784%26410 - 0.19314718 g) + (—?_at—)

K
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Third equation:

Ayq 1.06666667q_m2 - T2(72tC + 24tL - 1. 547375405] +
.

[0 8q 2 1
Ag S'qu - 02(721;(: + 1.10262516 - 0.5745401k %-):l +

Agy 1.21904693g,° - U2(86LD + 96tM - o.2952h866§| +

0.91428519q,2 - U2(864D + 1.942848M8 - 0.5278376k %ﬂ -

o3 %(-63 + DK - 1.27411439) + (teztl)ez%

Fourth equation:

0.8q,2 - U2(72tb + 1.31446908 - 0.54340470 %ﬂ +

A3 fm? - U2 (72tc + 1.4368361% - 0.0634586% ,% - 0.2733779% tl_eﬂ +

0.91438519q,° - U2(861LD + 1.94284848 - 0.5278376k -11;):, +

A33E,02857103qm2 - U2(8611-D + 2.06249040 - 0.08461188 % - 0.26469675 t%jl =

y3 _2at (-613 + 0.294h1406 - 0.18223425 %) + (t_eg_t_1>2

T+ 1 Ky,
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The nonlinear terms Kl, Ko, K3, and KLL are as follows:

K = A113(3@ + 32tM ~ 0.30476230) + A133(32D + 0.9062497T + 0.19262107 % - 0.1259%008 tia - 0.05971839 ;é_) -
%13(2;2395 G + 2048tQ - 0.14097508 + 0.093h502% % + 0.03760128 tie + 0.01714176 ;13) +

A333(2% @ + 0.7B76310k + 0.2306750k T - 0.08105616 tia - 002979936 ?15) N

21220 2 -2hte + 2L - 1.10000028) + An2A13(96D + 1.T72k2TT6 - 0.k42857 %) +

ApPgy (B2 E + 3850 - 0.56412160 + 0.05704708 %:)+ Aﬂl2A33(%2 E + 1.689h22k0 ~ 0,35366256 % +
a3%0 Ee—f—I(-elrw + 1.9299377h - 0.02555028 T - 027105478 ?15) +

A132Au(96n + L.9T916568 + 0.06166172 & - 0.25047667 t%) +

A132A31(—u-{':2 E + 2.015150 + 0.17372192 § - 0.23433120 tie) +

A132A33&22 + 2.72042070 + 069054222 £ - 0.34588152 tla- - 0.14399928 é) +

Anu %L:tr(-l?_s.s + 384N - 1.16001280 - 0.1711k112 %) +

Aﬁam(l%l' + 1536tP - 014124928 + 0.12966912 T + 0.04509856 ;%) +

A31"‘A13(l3t322_" F + 1.95553600 - 0.20380672 L + 0.0b409856 ;%) +

A312A33(1—6§§ @ + 2.15970816 - 0.03670636 & + 0.1128038% t-le- + 0.05142508 55) +

Ag%u 28 (316 5 4 119026800 - 0.2857848 £ - 0.2hT760H 3)+

’ A332An<l'_:% F + 1.91459552 + 0.2206310% % - 0.18%27392 ;15) +

%Em(l%r + 272604124 + 077605208 % - 0.27906768 ;15 - 0.1397¥606 ;13) +

maﬂalcé? G + 2.2516B768 + 0.52723072 & - 0.09931680 1-.1—2 + 0.05142508 :15) .

AyiAya0 tif'-i(-h&w + 3.54T37968 - 1.03333332 %J:)  Ayhg U p2E(5TED + 192tM - 2.38094556) +

ApyAgsU t%"i(-m + 2.571A3464 - 0.942059kk %) + Azhg U ta:"l(-s'rsn + 2.5718356% ~ 0.ShoBsokk %) +
Ay3hg30 %(-57&3 + 2.87500632 - 0.01465512 ¥ - 0.51B22022 é) +

ApAaa0 ti;l(-é;:2 E + 2.09204160 - 1.1923150% 11—_') + AD_A13A31(¥ E + 3.56932160 - 0.66923104 %) +
Auw(—-?x + 3.792204%00 + 0.27125568 § - 0.47769%08 tig) +

Auﬁghg(ﬂt;ﬂr + 3.6190886% - 0.57112192 § + 0.08819712 ;’3) +

A13A31A33(£§9p + 3897654 + 0.HE50TTTS T - 0.36557280 )

23
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K, = Au3(3zn + 059047550 - 0.16538478 %) +
A133(32D + 1.593750 + 0.53812758 L - 0.14506887 L - 0.1h991k0k L - 0.03051809 -%) +
t t2 3 t
A 3(22@ @ + 0.38034272 - 0.089T2160 = + 0.03760128 = + 0.0LTLHLTE &) +
31 +3 t 2 . +3
A333(2t2§9é G + 1.13567832 + 0.k66106%0 I - 0.11696238 tl—z - 0.1270TT22 t% ~ 0.02943540 t-ll;) +
2at 1 1 1
Auaum(-m + 1.T736878k - 0.51666667 E) + AjlaAn(96D + 1.9T916568 + 0.06166172 T - 0.2504T667 ;é) +

AuaAn(BEE E + 1.78465080 - 0.33461552 %) + An2A33(£€E E + 1.896102 + 0.1356278% F ~ 0.23684706 ;1-2-) +

A% %%ti(-almc + 2.84hk95 + 0.52236534 % - 0.51206033 tiz - 0.15460086 3}3) +

A332A11(95n + 2.84999937 + 0.62459833 & - 0.36896406 1-:}2— - 0.14839629 t%) +
%2531(_211 E + 2.84542110 + 0.75054070 § - 0.33572088 é - 0.143083k% :15) +
g, (1 1 1 1
A Ass(_tz v hA892Ta8 + 11572060 L - 0.36954e88 L - ouvmes 1)
aq %0 222 %5-‘1 E + 1.15125920 - 0.57711248 %) + A312Au(-1—*'?2§- F + 1.955536 - 0.20380672 £ + 0.04509856 ;15) +
A312A13(13:—§31? + 227957512 + 0.347648 ¢ - 0.1684070k tl-é) +
Ap (E?u+2.h +o. 1 _o.0886m60 L + 0. l)
%55 TENSTE8 + 0.50808576 & %+ o.0suieses 1) +
A33%0 %c@ E + 1.88875090 + 0.3283619h T - 0.37832616 :15 - 0.14708%12 1_.,15) +
A332An(%82£* F + 2.7160412% + 077606208 % ~ 0.279067068 tiz - 0.13974606 é) +
%39%(51% F + 1.43507589 + 1.841k4320 T - 0.28275813 tie- - 0.h1674986 :15 - 0.08T74370 ;1,;) +
A332A31(-1—6;;ﬂ G + 3.11637312 + 1.03692240 % - 0.16310608 tia - 0.08204112 é) +
Apyhy3U %(—h&w + 3.85987548 - 0.05110056 3 - 0.54210956 tl_e) +
2at 1
AuA31U WI(-SYSD + 2.5T1h3k64 - 0.942859%% -_E) +
AyyAaqt 225 (576D x 1
118330 (- +2.87500632-o.01h65512;-0.51822222t—2+
2at 1 1
Ay38500 m(-s’rsn + 2.70833960 ~ 0.06203048 F- 0.52347038 2) +

Ay38530 -%(-5761) + 5.3750043% + 0.97810890 % - 0.79%21588 :—2 - 0.30175410 fi) +

AgyA3a0 ta_‘f'l(-%a-x + 2.38053600 - 029549696 11—; ~ 0.k9550128 :15) +

1 1

AuABAn(g-i"—" E + 5.030300 + 0.34754384 T - 0.16866240 ;5) *

AuAlyﬁ(%“ E + 544084150 + 1.36108kkk T - 0.69176304 :15 - 0.26799856 t%) .
AnAuAﬁ(gt;@ F + k.1029262k + 0.53652480 % - 0.3%664768 tia) ¥

Azsﬂslﬂsa(gt;@f‘ + 538107856 + 15312850 § < 056259752 %, - 0.2799068% -1;53-)
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Ky = Au3(-3%-13 + 12BtN - 0.20232650 + 0.01901568 %) +

A133(33’*_; E + 0.91722360 + 0.2343728 § - 0.11AMATI2 ;'la' - 0.04TFR3kL ;13.) +

A313(§2-EE H + BI52tR + 0.185T7056 + 0258785@(8%’: + 0.08626176 ;15 + 0.0k6HHEEY ;,%f 0.01327104 ;]-;;) +
A333(§6-§2 H + 1.03949568 + 0.43053768 & - 0:015120 %2- + 0.00181440 ;1§'_+ 0.013e7101 2'15) .

1,70 2552880 + 960 - 1.1904T2T8) + Ay aga(HE2 ¥ + 1.78466080 - 0.338Eus52 1) +
Auaa:u(gt%—e"r + 1536tP - 018124928 + 0.12966912 T + 0.04L09856 :::é-) +

Auaa33(l?;% F + 1.80954432 - 0.23556096 % + 0.04409856 fé) +

t"‘:tl (-aBBD + 1.35%16980 - 0.0310152k % - 0.26173519 fg) +
ABEAH(%EE + 2.015150 + 0.17372192 % - 0.23433120 ,:_2) +
A132A3l(l% F + 2.27957512 + 034764800 § - 0.1684070k -i:é) +
AnaAﬁél% F + 2.90765532 + 0.859%1696 % - 0.261218%6 ;'15 - 0.13803882 ;15) +
A3laU t_a:t_l(_klh F + 1536tP -~ 1.35762816 -~ 0.38900736 ;]é + 0.13229568 'La) +
g A (—58—2‘-8-(;+611+th¢037195776+028035072—+01_1280381+—+00511;25281-)
31 (—ﬂ0+23363#816+000372096 +o.u280381+;§+0.0511¢2528t—3-)+
A312A33(i2¥ﬁ H + 2.81806848 + 0.49208832 § + 0.25678528 '}E + 0.1383h592 ;'13 + 0.03981312 ;1,;) +
A332Ut3:t1€-@*2731?+087557832-030h65792¥- 036683712—5)
‘“'332“11(1_61;;& G + 2.25168768 + 0.42723072 + T - 0-09931680 ;2- + 0.05142528 tia-) +
A332A13(-1—6f:~;ﬂ G + 31263312 + 1.03692240 - 0.16510608 % - 0.08e0km1a ;13) .

2 1 1 1 1
Az %1(122;%5 E + 2.91644928 + 0.97228800 § + 0.06590592 o 0.13934592 3+ 0.03981312 ;I) .

A11A13U ta:hl("wsD + 2.5T1h346h - 0.94e8594k %) + Aj3Ag)U t—a:il.(-%—lzx + T6BEN - 2.32002560 - 0.3h22820k %3;) +
Apphga0 (2 8912 &, 5 09204160 - 12923190k )+ Ay3A30 t%t—l-(-%ﬁ E + 2.28251840 - 1.15422h96 %) +
‘13A33U §L3+2380536-0299h96961_0h9552128 1)

AqAggu 22 %—r + 1.hghh62T2 - 1.59127268 & - 0.26459236 22) +

AHABAu(g;@ F + 3.911072 - 0.50761344 % + 0.08819712 :_2) +

AuABA33(§%"§ ® + h.2029262k + 0.53650480 L - 0.35664768 :12_) +

AnA31A33(3-%E G + b.319K1632 - 0.073H1312 T + 0.22560768 .t% + 0.10285056 ;13') .

A13A31A33(1%%:é @ + L.TI937536 + 0.95553024 T - 0.18528960 ;15 + 0.10285056 %)
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Ky =
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]_13(3—25 E + 0.19172200 + 0.13217280 %) +

K

1 1 1 1
ACBB B + 1.52932978 + 0.55309932 - 0.13175400 ¥ 0.14514k80 ;3- - 0.02992983 ;E) +

A313
Ag33
Ao B2 -288D + 128571732 - 0.bTLN9TR )+11112 13(11523 + 1.89610200 + 0.1356278% - 0.23884706 )

E + 0.61255680 + 0.081126T2 = + 0.08626176 . + 0.046u86% % + 0.01327104 -1} +
® 2 2 ¥

E + 1.33485408 + 0.64514880 % - 0.0478%18% la - 0.09217152 —13- - 0.0155066% ‘lE) +

uaﬁn(% F + 1.80954h32 - 0.23556096 T + 0.04409856 :é) +
2 L 1 1

Ay %3(%- F + 1.91k59592 + 0.2206310% £ - 0.18%27392 ;5) +

1 1 1
Alaau T3 l(-aean + 2.18750217 + 0.58JOSKHS T - 0.3972099% =- 0.15087705 1;—3-) +
A132An(2t5_2 E + 2.72042070 + 0.6905%222 % - 0.34588152 tia - 0.1%399928 %3) +

(1382 3 1 1

AB2A31(]—“‘182— F + 2.90765532 + 0.859%1696 T -~ 0.26121856 3 0.;3808%2 ?3) +

t2
“‘312U tzitl '%E F + 0.74723136 - 0.7h563584 l - 0.13229618 _1_) +

Al32A33(]—‘-1—822—""- F + 5.43507589 + 1.841kk320 T - 028275613 % - 0.51674986 ;1§ - 0.08T743T0 ;}) +

Agy2A (—;;ﬂ G+215970816-003670656-—+on28038h—+0051h2528 )

Ay An(é;;ﬂ G + 2.47248T63 + 0.50808576 L + 0.08864160 & 3 + 0.05uhe5e8 173) +

A312A33(£222gﬁ H - 2.91645928 .+ 0.97228800 & + 0.06590592 ;15 + 0.13934592 ti3 + 0.03981312 ;1,;) +
3570 ta:tl( EFRE + 1535600 + 0.16303680 1 - 04887345 5 - a0 :13-) +

A332AH(E;-’%3§ o + 2.88453312 + 0.93080015 i 018912528 tl—; - o.oBl;aol;ao ;15) +

A332A]3(§§@ G + 5.58072496 + 2.0123126 § - 0.16849134 i - 0.35067168 :G% - 0.08593452 fi;) +

A332,\31(1229§ﬁ E + 3.54741120 + 1.5013362% L + 0.0031622% La + 0.0101606% ;15 + 0.03981312 fﬁ) +

ApyAg3U (-57613+287500632-001h65512%--0518m?§)

Ayl ¢ (§2_E+aogaoh160-119z3190h )

Ayahggl (§2€-E+2380536-02991+96961-oh9552128-§)+

Awﬂum(-$x + 2.380536 - 0.29949696 X - 0.49552128 t—2) o

g0 g2 B2 o 3 778180 + 0.65672488 L - 0.75665032 3 - o-e9haTozk 133) +
AgiAgsU -taff—l(-% F + 1.7511566% - 0.6093158k - 0.73367h2l ti’c‘) + ’
AuAnAn(g;;@ F + £.1029262) + 0.53652480 % ~ 0.35664T63 t_la') +

AHAW(JT%P + 5.43208248 + 155212416 F - 0.55813536 1-%'5 - 0.27949212 t—lg) +
AuAﬂAﬁ(i%m @ + 5.50337536 + 0.8554618 T - 0.19863360 ;21— + 010285056 t%) +
A13A31A33(3-%3ﬂ§ G + 5.8849862% + 1.91h6614k %— - o.a%'aho% ;:-"5‘- 0.16T4TTT6 :15)

{
L . -




NACA TN 2666

The definite integrals A, B,
foregoing equations are:

A = r (y - l)h dy
1 ¥y + 1)%(yt - 1)

=]

B = (y - 1" ay
1 ¥y + ¥yt - 1)

c=fw (y -1) ay
1 (y + )%yt - 1)

oo | _tr-vtay
1 (y + 1)8(yt - 1)

E=fh r-u"a
1 (v + 1)t - 1)

F = (y - ]-)br dy
1o (y+ Bt - 1)
. (y - 1" o

1 (v + 1)yt - 1)

H=J% (-1 s
1 (v + 1)@t - 1)

C, and so forth that occur in the

J=£°(2y+1) dy
7yt + 1)

K=f dy )
y(y‘t+15
L=f dy

(v + 1)%(yt + 1)

M=f°° y qy
1 (v + 1)Hyt + 1)

N=fw ¥° dy
6
1 (y+21)(yt +1)

P = Lw Jé dy
(v + 1)%xt + 1)

y” dy

Q =
£ (v + Ot + 1)

R = ¥2 &y
(v + 1)12(yt + 1)
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TABLE 1
FLOW PAST ELLIPTIC CYLINDER WITH b/a = 0.5 AWD M, = 0.5
. Velocity distribution, q/U
Eccentric
le
a.n% 2 Incompressible Variational | Hooker's K:E}:;ln;:
(deg) flow method method (reference 2)
0 (o 1 R (SR
15 . 7085 0.6655 0.667 0.6683
30 1.1339 1.105k 1.130 1.1310
45 154h7 1.3731 1.380 1.3869
60 1.0 1.5450 1.513 1.5184
T 1.4867 1.6468 1.575 1.5809
90 1.5 1.6810 1.607 1.5994
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TABIE 2

FLOW PAST AN ELLIPTIC CYLINDER WITH b/a = 0.1 AND M, = 0.8

Becenmtric Velocity distribution, q/U
angle, '
n Incompressible | Variational [ Perl's solution Kaplui_]; 8
(deg) flow method (reference 4) TesulLs
(reference 2)

0 0 o 0 0

5 .T2hh L6982 | eeeeee .6898
10 .9569 .9256 T e .9137
15 1.0307 1.0026 | @ —---2- ' -.9886
20 1.0608 1.0399 |  eme-e- g 1.0237
30 1.0839 1.0845 1.145 1.0629
4o 1.0924 1.1199 1.1625 1.0918 N
50 1.0962 1.1526 1.175k . 11179
60 1.0983 1.1819 1.1827 1.1408
70 1.0994 1.2052 1.1883 1.1589
80 ; 1.0999 1.2203 1.1903 1.1706
90 - 1.10 1.2255 1.1913 1.17h7

I8
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TABLIE 3
FLOW PAST A CIRCULAR CYLINDER WHEN M, = 0.k
Becentric Velocity distribution, q/U
angle, Rayleigh-~Janze
1 Incompressible [Present solution|{Wang's results aZtho a( th:l_rdnw
(deg) £low with four terms| (reference 9) o
approximation)
0 o | eemeee ] e 0
10 3473 0.2966 0.3194 .3104
20 .6840 .6002 .6349 6439
30 1.0000 .9132 .9410 .9588
Lo 1.2856 1.2305 1.2470 1.2658
50 1.5321 1.5381 1.5522 1.5613
60 1.7321 1.8149 1.8450 1.8355
70 1.8794 2.0366 2.097h 2.0752
80 1.9696 2.1804 2.2712 2.2269
90 2.0000 2.2303 2.3335 2,284L0
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K

1 = Constant

€ = Constant

Figure l.- Elliptic coordinateq.
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2.0 I
B Variational method
|
B ’,n—”"t‘zﬂiiér
1.5 — = ——
B _‘\ Incompressible
L
q
o |
1.0
| Y
-
.5
B A Perl
|, B Kaplan
J
o N T N O O O
20 Lo 60 80 100

m, deg

Figure 2.- Velocity distribution on surface of an elliptic cylinder of

thickness ratio 0.5 when M, = 0.5.

é



NACA TN 2666 . 35

ol
0
0 80 100
4 n, deg
CP
*
-
'-a8
\J‘, Incompressible
-1.2
Variational method
-1.6
® Prandtl-Glauert
+ KdrmAn-Tsien
2.0 |

Figure 3.- Pressure distribution on surface of elliptic cylinder of
thickness ratio 0.5 with M, = 0.5.
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T T T Y
Variational method I
1.2 ] —t——
Perl ~al..-—-— - i
— 7 L ~—T _—-1r—""|_T. Kaplan
= — e —
e At N
',/’::,»’1 Incompressible
1.0 A
y
/
/
/
l
.8 1
g /
i ,
)
4
.2
0 2
0]
Lo n, deg 60 8a 100

Figure 4.~ Velocity distribution on surface of an elliptic cylinder of
thickness ratio 0.1 when M, = 0.8.
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1.2

ho 5, geg 60

Incompressible

Variational method

° |
+ ® [ ] o
~b l -+ -+ e
® Prandtl-Glauert \\_
+ x{rmin-Tsien
-6 ‘L

Figure 5.- Pressure distribution on surface of elliptic cylinder of
thickness ratio 0.1 with M, = 0.8.

.
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Imai

e

/

N
. Variational
Y/ method
V4

7
A Incompressible

60

8

0] 100

Figure 6.- Flow past a circular cylinder obtained by making

t approach «, when M, = 0.k,
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1.2

1.0

-.6

S

0 60 0
b 7, deg 8
/ Incompressible
<= I‘\-.: b i B¢ —E—ar—ar——
HO = 0.8 HO = 0.)4

\

39

Figure T.- Pressure distribution on surface of elliptic cylinder of
thickness ratio 0.1 when M, = 0.4 and 0.8.
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